
3B07BCA

Java Programming

Introduction

• Java is a high-level Object Oriented programming

language originally developed by Sun Microsystems and

released in 1995. Java runs on a variety of platforms,

such as Windows, Mac OS, and the various versions of

UNIX

History of Java

• The history of Java is very interesting. Java was

originally designed for interactive television, but it

was too advanced technology for the digital cable

television industry at the time.

• The history of Java starts with the Green Team.

Java team members (also known as Green Team),

initiated this project to develop a language for digital

devices such as set-top boxes, televisions, etc.

• However, it was suited for internet programming.

Later, Java technology was incorporated by

Netscape.

• The principles for creating Java programming

were "Simple, Robust, Portable, Platform-

independent, Secured, High Performance,

Multithreaded, Architecture Neutral, Object-

Oriented, Interpreted, and Dynamic".

• Java was developed by James Gosling, who is

known as the father of Java, in 1995. James

Gosling and his team members started the

project in the early '90s.

• Currently, Java is used in internet programming,

mobile devices, games, e-business solutions,

etc.

Significant points that describe the history of Java.

• James Gosling, Mike Sheridan, and Patrick
Naughton initiated the Java language project in June
1991. The small team of sun engineers called Green
Team.

• Initially designed for small, embedded systems in
electronic appliances like set-top boxes.

• Firstly, it was called "Greentalk" by James Gosling,
and the file extension was .gt.

• After that, it was called Oak and was developed as a
part of the Green project.

Why Java named "Oak"?

• Oak is a symbol of strength and chosen as a national tree

of many countries like the U.S.A., France, Germany,

Romania, etc.

• In 1995, Oak was renamed as "Java" because it was

already a trademark by Oak Technologies.

Why Java Programming named "Java"?

• The suggested words were "dynamic", "revolutionary",

"Silk", "jolt", "DNA", etc. They wanted something that

reflected the essence of the technology: revolutionary,

dynamic, lively, cool, unique, and easy to spell and fun to

say.

• According to James Gosling, "Java was one of the top

choices along with Silk". Since Java was so unique, most

of the team members preferred Java than other names.

• Java is an island of Indonesia where the first coffee was

produced (called java coffee). Java name was chosen by

James Gosling while having coffee near his office.

• Notice that Java is just a name, not an acronym.

• Initially developed by James Gosling at Sun Microsystems
(which is now a subsidiary of Oracle Corporation) and
released in 1995.

• In 1995, Time magazine called Java one of the Ten Best
Products of 1995.

• JDK 1.0 released in(January 23, 1996). After the first release
of Java, there have been many additional features added to
the language. Now Java is being used in Windows
applications, Web applications, enterprise applications, mobile
applications, cards, etc. Each new version adds the new
features in Java.

Java Version History

• JDK Alpha and Beta (1995)

• JDK 1.0 (23rd Jan 1996)

• JDK 1.1 (19th Feb 1997)

• J2SE 1.2 (8th Dec 1998)

• J2SE 1.3 (8th May 2000)

• J2SE 1.4 (6th Feb 2002)

• J2SE 5.0 (30th Sep 2004)

• Java SE 6 (11th Dec 2006)

• Java SE 7 (28th July 2011)

• Java SE 8 (18th Mar 2014)

• Java SE 9 (21st Sep 2017)

• Java SE 10 (20th Mar 2018)

Features of Java

• The primary objective of Java programming language

creation was to make it portable, simple and secure

programming language.

• Apart from this, there are also some excellent features

which play an important role in the popularity of this

language.

• The features of Java are also known as java buzzwords.

Simple

• Java is very easy to learn, and its syntax is simple, clean

and easy to understand. According to Sun, Java

language is a simple programming language because:
• Java syntax is based on C++ (so easier for programmers to learn it

after C++).

• Java has removed many complicated and rarely-used features, for

example, explicit pointers, operator overloading, etc.

• There is no need to remove unreferenced objects because there is an

Automatic Garbage Collection in Java.

Object-oriented

• Java is an object-oriented programming language.

Everything in Java is an object.

• Basic concepts of OOPs are:
• Object

• Class

• Inheritance

• Polymorphism

• Abstraction

• Encapsulation

Platform Independent

• Java is platform independent because it is different from

other languages like C, C++, etc. which are compiled into

platform specific machines while Java is a Write Once

Run Anywhere (WORA) language.

• A platform is the hardware or software environment in

which a program runs.

• There are two types of platforms software-based

and hardware-based. Java provides a software-

based platform.

• The Java platform differs from most other

platforms in the sense that it is a software-based

platform that runs on the top of other hardware-

based platforms. It has two components:
• Runtime Environment

• API(Application Programming Interface)

Secured

• Java is best known for its security. With Java, we can develop virus-
free systems. Java is secured because:

• No explicit pointer

• Java Programs run inside a virtual machine sandbox

• Classloader: Classloader in Java is a part of the Java Runtime Environment(JRE)
which is used to load Java classes into the Java Virtual Machine dynamically. It adds
security by separating the package for the classes of the local file system from those
that are imported from network sources.

• Bytecode Verifier: It checks the code fragments for illegal code that can violate
access right to objects.

• Security Manager: It determines what resources a class can access such as
reading and writing to the local disk.

• Java language provides these securities by default. Some security
can also be provided by an application developer explicitly

Robust

• Robust simply means strong. Java is robust because:
• It uses strong memory management.

• There is a lack of pointers that avoids security problems.

• There is automatic garbage collection in java which runs on the Java

Virtual Machine to get rid of objects which are not being used by a

Java application anymore.

• There are exception handling and the type checking mechanism in

Java. All these points make Java robust.

Architecture-neutral

• Java is architecture neutral because there are no

implementation dependent features, for example, the size

of primitive types is fixed.

• In C programming, int data type occupies 2 bytes of

memory for 32-bit architecture and 4 bytes of memory for

64-bit architecture. However, it occupies 4 bytes of

memory for both 32 and 64-bit architectures in Java

Portable

• Java is portable because it facilitates you to carry the

Java bytecode to any platform. It doesn't require any

implementation.

High Performance

• Java is faster than other traditional interpreted

programming languages because Java bytecode is

"close" to native code.

• It is still a little bit slower than a compiled language (e.g.,

C++). Java is an interpreted language that is why it is

slower than compiled languages, e.g., C, C++, etc.

Distributed

• Java is distributed because it facilitates users to create

distributed applications in Java. RMI and EJB are used

for creating distributed applications.

• This feature of Java makes us able to access files by

calling the methods from any machine on the internet.

Multi Threading

• A thread is like a separate program, executing

concurrently.

• We can write Java programs that deal with many tasks at

once by defining multiple threads.

• The main advantage of multi-threading is that it doesn't

occupy memory for each thread. It shares a common

memory area. Threads are important for multi-media,

Web applications, etc.

Dynamic

• Java is a dynamic language.

• It supports dynamic loading of classes. It means classes

are loaded on demand. It also supports functions from its

native languages, i.e., C and C++.

• Java supports dynamic compilation and automatic

memory management (garbage collection).

JVM (Java Virtual Machine)

• JVM is an abstract machine. It is called a virtual machine

because it doesn't physically exist.

• It is a specification that provides a runtime environment in

which Java bytecode can be executed.

• It can also run those programs which are written in other

languages and compiled to Java bytecode.

• The JVM performs following operation:
• Loads code

• Verifies code

• Executes code

• Provides runtime environment

• JVM provides definitions for the:
• Memory area

• Class file format

• Register set

• Garbage-collected heap

• Fatal error reporting etc.

JVM Architecture

• 1) Classloader
• Classloader is a subsystem of JVM which is used to load

class files.

• Whenever we run the java program, it is loaded first by the

classloader. There are three built-in classloaders in Java.

• 2) Class(Method) Area
• Class(Method) Area stores per-class structures such as the

runtime constant pool, field and method data, the code for

methods.

• 3) Heap
• It is the runtime data area in which objects are allocated.

• 4) Stack
• Java Stack stores frames. It holds local variables and

partial results, and plays a part in method invocation and

return.

• Each thread has a private JVM stack, created at the same

time as thread.

• A new frame is created each time a method is invoked. A

frame is destroyed when its method invocation completes.

• 5) Program Counter Register
• PC (program counter) register contains the address of the

Java virtual machine instruction currently being executed.

• 6) Native Method Stack
• It contains all the native methods used in the application.

• 7) Execution Engine
• It contains:

• A virtual processor

• Interpreter: Read bytecode stream then execute the

instructions.

• Just-In-Time(JIT) compiler: It is used to improve the

performance. JIT compiles parts of the byte code that

have similar functionality at the same time, and hence

reduces the amount of time needed for compilation.

• 8) Java Native Interface
• Java Native Interface (JNI) is a framework which provides an interface

to communicate with another application written in another language

like C, C++, Assembly etc. Java uses JNI framework to send output to

the Console or interact with OS libraries.

Java Runtime Environment (JRE)

• It is also written as Java RTE.

• The Java Runtime Environment is a set of software tools

which are used for developing Java applications.

• It is used to provide the runtime environment. It is the

implementation of JVM.

• It physically exists. It contains a set of libraries + other

files that JVM uses at runtime.

JDK(Java Development Kit)

• The Java Development Kit (JDK) is a software

development environment which is used to develop Java

applications and applets. It physically exists. It contains

JRE + development tools.

• JDK is an implementation of any one of the

below given Java Platforms released by Oracle

Corporation:
• Standard Edition Java Platform

• Enterprise Edition Java Platform

• Micro Edition Java Platform

• The JDK contains a private Java Virtual Machine (JVM)

and a few other resources such as an interpreter/loader

(java), a compiler (javac), an archiver (jar), a

documentation generator (Javadoc), etc. to complete the

development of a Java Application.

JDK Tools

Tools Description

javac Java compiler,which translates java source

code to byte code.

java Java interpreter,which runs applet & application

program by reading and interpreting bytecode

files.

javad Java debugger ,which helps to find errors in our

program.

javadoc Creates HTML format documentation from java

source code files.

appletviewer Enables to run java applets.

Application Program Interface (API)

• The java standard library (API) includes hundreds of

classes and methods grouped into several functional

packages.

Process of building and running java applicaton program

Text Editor Java Source

Code

javac Java class file

java

Program

Output

Setting Path

• The path is required to be set for using tools such as

javac, java, etc.

• If you are saving the Java source file inside the JDK/bin

directory, the path is not required to be set because all

the tools will be available in the current directory.

• However, if you have your Java file outside the JDK/bin

folder, it is necessary to set the path of JDK.

• There are two ways to set the path in Java:
• Temporary

• Permanent

• 1) Setting the Temporary Path of JDK in Windows

• Open the command prompt

• Copy the path of the JDK/bin directory

• Write in command prompt: set path=copied_path

• Eg: set path=C:\Program Files\Java\jdk1.6.0_23\bin

• 2) Setting Permanent Path of JDK in

Windows

• Go to MyComputer properties -> advanced tab -

> environment variables -> new tab of user

variable -> write path in variable name -> write

path of bin folder in variable value -> ok -> ok ->

ok

ByteCode

• Java bytecode is the instruction set for the Java Virtual

Machine.

• It acts similar to an assembler which is an alias

representation of a C++ code.

• As soon as a java program is compiled, java bytecode is

generated.

• With the help of java bytecode we achieve platform

independence in java.

.java file

.class file

Source Code

(Program)

compiler

bytecode

JVM

(Windows) JVM (Linux) JVM (Mac)

Machine Code Machine CodeMachine Code

Java programming

fundamentals

Overview of Java Program

◈ Java is a general purpose ,object

oriented programming language.

◈ We can develop two types of Java

Programs.

◇Stand alone applications

◇Web applets

50

◈ Stand alone applications are programs

written in java to carry out certain tasks

on stand alone local computer.

◈ Applets are small java programs

developed for internet applications.

51

52

Java

Source

code

Java Compiler

Java enabled

web browser

Java

interpreter

output output

Comparison of Applet & Application Program

53

BASIS FOR COMPARISON APPLET APPLICATION

Basic It is small program uses another

application program for its execution.

An application is the programs

executed on the computer

independently.

main() method Do not use the main method Uses the main method for

execution

Execution Cannot run independently require API's

(Ex. Web API).

Can run alone but require JRE.

Installation Prior installation is not needed Requires prior explicit installation

on the local computer.

Read and write operation The files cannot be read and write on

the local computer through applet.

Applications are capable of

performing those operations to

the files on the local computer.

Communication with

other servers

Cannot communicate with other

servers.

Communication with other

servers is probably possible.

Restrictions Applets cannot access files residing on

the local computer.

Can access any data or file

available on the system.

Security Requires security for the system as

they are untrusted.

No security concerns are there.

Java Program Structure

54

Documentation Section

Package Section

Import Section

Interface Section

Class Definitions

Main Method Class

{

Main method Definition

}

suggested

optional

optional

optional

optional

essential

◈ Documentation Section

◆ It comprises a set of comment lines giving the name of

program,the author and the other details.

◈ Package Section

◆ It is a collection of classes, interfaces and sub-

packages. A sub package contains collection of

classes, interfaces and sub-sub packages

◈ Import Statements

◆ This statement instructs the interpreter to load the

packages required for our program.

55

◈ Interface Statements

◆ It is similar to class ,but contains only abstract methods.

◈ Class Definitions

◆ A java program may contain multiple class definitions.Classes

are the primary and essential elements of a java program.

◈ Main Method Class

◆ Every java program requires a main() as it is the starting point

of a program.

56

57

◈ A package is a collection of classes, interfaces and sub-packages.

A sub package contains collection of classes, interfaces and sub-

sub packages etc. java.lang.*; package is imported by default and

this package is known as default package.

◈ Class is keyword used for developing user defined data type and

every java program must start with a concept of class.

◈ "ClassName" represent a java valid variable name treated as a

name of the class each and every class name in java is treated as

user-defined data type.

◈ Data member represents either instance or static they will be

selected based on the name of the class.

58

◈ User-defined methods represents either instance or static they are meant for

performing the operations either once or each and every time.

◈ Each and every java program starts execution from the main() method. And

hence main() method is known as program driver.

◈ Since main() method of java is not returning any value and hence its return

type must be void.

◈ Since main() method of java executes only once throughout the java program

execution and hence its nature must be static.

◈ Since main() method must be accessed by every java programmer and hence

whose access specifier must be public.

◈ Each and every main() method of java must take array of objects of String.

◈ Block of statements represents set of executable statements which are in

term calling user-defined methods are containing business-logic.

59

Java Tokens

◈ The smallest individual unit of a program is called

tokens.The compiler recogonises them for building up

expressions and statements.

◈ Java language includes 5 tokens

◆ Reserved words(keywords)

◆ Identifiers

◆ Literals

◆ Operators

◆ Seperators

60

Character set

◈ The smallest units of a java language

are characters used to write java tokens.

◈ These characters are defined by a

UNICODE character set.

61

◈ Keywords

◈ Keywords in Java are reserved words that represent predefined

actions, internal processes etc. Because of this, keywords cannot

be used as names of variables, functions, objects etc.

◈ Identifiers

◈ Identifiers are the name given to variables, classes, methods, etc.

62

Literals
◈ Any constant value which can be assigned to the variable

is called as literal/constant.

◈ Java supports 5 main literals

◆ Integer

◆ Floating point

◆ Character

◆ String

◆ Boolean

63

◈ Operators

◆ operators are the Special Symbols those

have specific functions associated with them for

Performing the operations it needs some Operands

◈ Separators

◆ These are Special Symbols used to Indicate the

group of code that is either be divided or arrange into

the Block The Separators includes Parentheses, Open

Curly braces Comma, Semicolon, or either it will be

period or dot Operator

64

CamelCase in java naming conventions

◈ Java follows camelcase syntax for naming the class,

interface, method and variable.

According to CamelCase if name is combined with

two words, second word will start with uppercase

letter always.

◈ Eg : actionPerformed()

65

Constants

◈ Constants in Java refers to fixed values that do

not change during the execution of a program.

◈ Java supports several types of constants.

66

67

variables

◈ Variable is an identifier which holds data or

another one variable is an identifier whose

value can be changed at the execution time of

program.

68

Rules to declare a Variable

• Every variable name should start with either alphabets or underscore

(_) or dollar ($) symbol.

• No space are allowed in the variable declarations.

• Except underscore (_) no special symbol are allowed in the middle

of variable declaration

• Variable name always should exist in the left hand side of

assignment operators.

• Maximum length of variable is 64 characters.

• No keywords should access variable name.

69

Data Types

• Data types specify the different sizes and values that can be stored in the variable.

70

71

Data Type Default Value Default size

boolean false 1 bit

char '\u0000' 2 byte

byte 0 1 byte

short 0 2 byte

int 0 4 byte

long 0L 8 byte

float 0.0f 4 byte

double 0.0d 8 byte

Declaration of variables

• It tells the compiler ,what the variable name is.

• It specifies what type of data the variable will hold.

• The place declaration decides the scope of variable.
• Syntax : data_type variable1,variable2,…….,variablen;

• Example : int a,b,c;

float x;

72

Initialisation of variables

• Variable can be initialised in two ways.

1. Using assignment operator (Compile time)

2. Using read statement (Runtime)

73

Scope of variables

There are three types of variables in Java.

• local variable

• instance variable

• static variable

74

Local Variable

• A variable declared inside the body of the method is called local variable. You can

use this variable only within that method and the other methods in the class aren't

even aware that the variable exists.

• A local variable cannot be defined with "static" keyword.

Instance Variable

• A variable declared inside the class but outside the body of the method, is called

instance variable. It is not declared as static.

• It is called instance variable because its value is instance specific and is not

shared among instances.

Static (class) variable

• A variable which is declared as static is called static variable. It cannot be local.

You can create a single copy of static variable and share among all the instances

of the class. Memory allocation for static variable happens only once when the

class is loaded in the memory.

75

Type Casting/type conversion

• Converting one primitive datatype into another is known as type casting (type

conversion) in Java. You can cast the primitive datatypes in two ways namely,

• Widening − Converting a lower data type to a higher datatype is known as

widening. In this case the casting/conversion is done automatically therefore, it

is known as implicit type casting. In this case both datatypes should be

compatible with each other.

• Narrowing − Converting a higher datatype to a lower datatype is known as

narrowing. In this case the casting/conversion is not done automatically, you

need to convert explicitly using the cast operator “()” explicitly. Therefore, it is

known as explicit type casting. In this case both datatypes need not be

compatible with each other.

76

Standard default values

• In java , every variable has a default value.

• If we don’t initialise a variable when it is first created ,java provides ,default

value to that variable type automatically.

77

Data Type Default Value (for fields)

byte 0

short 0

int 0

long 0L

float 0.0f

double 0.0d

char ‘u0000’

String (or any object) null

boolean false

class Demo

{

static boolean val1;

static double val2;

static float val3;

static int val4;

static long val5;

static String val6;

public static void main(String[] args)

{

System.out.println("Default values.....");

System.out.println("Val1 = " + val1);

System.out.println("Val2 = " + val2);

System.out.println("Val3 = " + val3);

System.out.println("Val4 = " + val4);

System.out.println("Val5 = " + val5);

System.out.println("Val6 = " + val6);

}

}

78

Output
Default values.....

Val1 = false

Val2 = 0.0

Val3 = 0.0

Val4 = 0

Val5 = 0

Val6 = null

Operators

79

Decision Making & Branching

Statements

• Decision making statement statements is also called

selection statement.

• That is depending on the condition block need to be

executed or not which is decided by condition.

• If the condition is "true" statement block will be executed,

if condition is "false" then statement block will not be

executed.

80

• In java there are three types of decision making

statement.

if

if-else

nested if statement

switch

81

if Statement

• It is one of the simplest decision-making statement which

is used to decide whether a block of JavaScript code will

execute if a certain condition is true.

• Syntax

if (condition) {

// block of code will execute if the condition is true

}

82

Flowchart

83

if….else statement

• The Java if-else statement also tests the condition.

• It executes the if block if condition is true otherwise else

block is executed.

• Syntax

if(condition){

//code if condition is true

}else{

//code if condition is false

}

84

Flowchart

85

Flowchart

86

if-else-if ladder Statement
• The if-else-if ladder statement executes one condition from

multiple statements.

• Syntax:
if(condition1){

//code to be executed if condition1 is true

}else if(condition2){

//code to be executed if condition2 is true

}

else if(condition3){

//code to be executed if condition3 is true

}

...

else{

//code to be executed if all the conditions are false

}

87

Nested if statement
• The nested if statement represents the if block within

another if block. Here, the inner if block condition executes

only when outer if block condition is true.

• Syntax:

if(condition){

//code to be executed

if(condition){

//code to be executed

}

}

88

Flowchart

89

Switch Statement

• The switch statement in java language is used to execute

the code from multiple conditions or case. It is same like if

else-if ladder statement.

• A switch statement work with byte, short, char and int

primitive data type, it also works with enumerated types

and string.

90

• Rules for apply switch statement

• With switch statement use only byte, short, int, char data

type (float data type is not allowed). You can use any

number of case statements within a switch. Value for a

case must be same as the variable in switch.

• Limitations of switch statement

• Logical operators cannot be used with switch statement.

For instance

91

• Syntax

92

switch(expression/variable)

{

case value: //statements // any number of

case statements

break;

//optional

default: //optional //statements

}

Flowchart

93

Loops

94

• loops are used to execute a set of instructions/functions

repeatedly when some conditions become true.

• There are three types of loops in Java.

for loop

while loop

do-while loop

95

For Loop

• The Java for loop is used to iterate a part of the program

several times. If the number of iteration is fixed, it is

recommended to use for loop.

• There are three types of for loops in java.

Simple For Loop

For-each or Enhanced For Loop

Labeled For Loop

96

Simple For Loop

• It consists of four parts:

• Initialization: It is the initial condition which is executed once when the loop

starts. Here, we can initialize the variable, or we can use an already

initialized variable. It is an optional condition.

• Condition: It is the second condition which is executed each time to test the

condition of the loop. It continues execution until the condition is false. It

must return boolean value either true or false. It is an optional condition.

• Statement: The statement of the loop is executed each time until the second

condition is false.

• Increment/Decrement: It increments or decrements the variable value. It is

an optional condition.

97

98

Arrays

• An array is a group of contiguous or related data items that share a common

name.

• Used when programs have to handle large amount of data

• Each value is stored at a specific position

• Position is called a index or superscript. Base index = 0

• The ability to use a single name to represent a collection of items and refer

to an item by specifying the item number enables us to develop concise and

efficient programs. For example, a loop with index as the control variable can

be used to read the entire array, perform calculations, and print out the

results.

99

69

61

70

89

23

10

9

0

1

2

3

4

5

6

index

values

100

• Like any other variables, arrays must declared and created before they can be used.
Creation of arrays involve three steps:
– Declare the array

– Create storage area in primary memory.

– Put values into the array (i.e., Memory location)

• Declaration of Arrays:
– Form 1:

Type arrayname[]

– Form 2:
• Type [] arrayname;

– Examples:

int[] students;

int students[];
– Note: we don’t specify the size of arrays in the declaration.

Declaration of Arrays

101

Creation of Arrays

– After declaring arrays, we need to allocate memory for storage

array items.

– In Java, this is carried out by using “new” operator, as follows:

• Arrayname = new type[size];

– Examples:

• students = new int[7];

102

Initialisation of Arrays

• Once arrays are created, they need to be initialised with some values before
access their content. A general form of initialisation is:
– Arrayname [index/subscript] = value;

• Example:
• students[0] = 50;

• students[1] = 40;

• Like C, Java creates arrays starting with subscript 0 and ends with value one
less than the size specified.

• Unlike C, Java protects arrays from overruns and under runs. Trying to
access an array beyond its boundaries will generate an error message.

103

• Arrays are fixed length

• Length is specified at create time

• In java, all arrays store the allocated size in a variable
named “length”.

• We can access the length of arrays as arrayName.length:
e.g. int x = students.length; // x = 7

• Accessed using the index
e.g. int x = students [1]; // x = 40

Arrays – Length

104

Arrays – Example

public class StudentArray{

public static void main(String[] args) {

int[] students;

students = new int[7];

System.out.println("Array Length = " + students.length);

for (int i=0; i < students.length; i++)

students[i] = 2*i;

System.out.println("Values Stored in Array:");

for (int i=0; i < students.length; i++)

System.out.println(students[i]);

}

}

:w

105

• Arrays can also be initialised like standard variables at
the time of their declaration.

– Type arrayname[] = {list of values};

• Example:
int[] students = {55, 69, 70, 30, 80};

• Creates and initializes the array of integers of length 5.

• In this case it is not necessary to use the new operator.

Arrays – Initializing at Declaration

106

Arrays – Example

public class StudentArray{

public static void main(String[] args) {

int[] students = {55, 69, 70, 30, 80};

System.out.println("Array Length = " + students.length);

System.out.println("Values Stored in Array:");

for (int i=0; i < students.length; i++)

System.out.println(students[i]);

}

}

107

Two Dimensional Arrays

• Two dimensional arrays

allows us to store data that

are recorded in table. For

example:

• Table contains 12 items, we

can think of this as a matrix

consisting of 4 rows and 3

columns.

Item1 Item2 Item3

Salesgirl #1 10 15 30

Salesgirl #2 14 30 33

Salesgirl #3 200 32 1

Salesgirl #4 10 200 4

Sold

Person

108

2D arrays manipulations

• Declaration:
– int myArray [][];

• Creation:
– myArray = new int[4][3]; // OR

– int myArray [][] = new int[4][3];

• Initialisation:
– Single Value;

• myArray[0][0] = 10;

– Multiple values:
• int tableA[2][3] = {{10, 15, 30}, {14, 30, 33}};

• int tableA[][] = {{10, 15, 30}, {14, 30, 33}};

109

Variable Size Arrays

• Java treats multidimensional arrays as “arrays of arrays”.

It is possible to declare a 2D arrays as follows:

– int a[][] = new int [3][];

– a[0]= new int [3];

– a[1]= new int [2];

– a[2]= new int [4];

110

• Arrays can be used to store objects

Circle[] circleArray;

circleArray = new Circle[25];

• The above statement creates an array that can store
references to 25 Circle objects.

• Circle objects are not created.

Arrays of Objects

111

• Create the Circle objects and stores them in the

array.
– //declare an array for Circle

Circle circleArray[] = new Circle[25];

int r = 0;

// create circle objects and store in array

for (r=0; r <25; r++)

circleArray[r] = new Circle(r);

Arrays of Objects

112

Strings

• String manipulation is the most common operation performed in Java programs. The easiest way to
represent a String (a sequence of characters) is by using an array of characters.

– Example:

– char place[] = new char[4];

– place[0] = ‘J’;

– place[1] = ‘a’;

– place[2] = ‘v’;

– place[3] = ‘a’;

• Although character arrays have the advantage of being able to query their length, they themselves are
too primitive and don’t support a range of common string operations. For example, copying a string,
searching for specific pattern etc.

• Recognising the importance and common usage of String manipulation in large software projects,
Java supports String as one of the fundamental data type at the language level. Strings related book
keeping operations (e.g., end of string) are handled automatically.

113

String Operations in Java

• Following are some useful classes that Java

provides for String operations.

– String Class

– StringBuffer Class

– StringTokenizer Class

114

String Class

• String class provides many operations for manipulating

strings.

– Constructors

– Utility

– Comparisons

– Conversions

• String objects are read-only (immutable)

115

Strings Basics

• Declaration and Creation:

– String stringName;

– stringName = new String (“string value”);

– Example:

• String city;

• city = new String (“Bangalore”);

– Length of string can be accessed by invoking length() method

defined in String class:

• int len = city.length();

116

String operations and Arrays

• Java Strings can be concatenated using the + operator.
– String city = “New” + “York”;

– String city1 = “Delhi”;

– String city2 = “New “+city1;

• Strings Arrays
– String city[] = new String[5];

– city[0] = new String(“Melbourne”);

– city[1] = new String(“Sydney”);

– …

– String megacities[] = {“Brisbane”, “Sydney”, “Melbourne”, “Adelaide”,
“Perth”};

117

String class - Constructors

public String() Constructs an empty String.

Public String(String value) Constructs a new string
copying the specified string.

118

String – Some useful operations
public int length() Returns the length of the

string.

public charAt(int index) Returns the character at the
specified location (index)

public int compareTo(String
anotherString)

public int
compareToIgnoreCase(String
anotherString)

Compare the Strings.

reigonMatch(int start, String
other, int ostart, int count)

Compares a region of the
Strings with the specified
start.

119

String – Some useful operations

public String replace(char
oldChar, char newChar)

Returns a new string with all
instances of the oldChar
replaced with newChar.

public trim() Trims leading and trailing
white spaces.

public String toLowerCase()

public String toUpperCase()

Changes as specified.

StringBuffer class
• StringBuffer class is used to create a mutable string

object. It means, it can be changed after it is created.

• It represents growable and writable character sequence.

• It is similar to String class in Java both are used to create

string, but StringBuffer object can be changed.

120

• StringBuffer defines 4 constructors.

• StringBuffer(): It creates an empty string buffer and

reserves space for 16 characters.

• StringBuffer(int size): It creates an empty string and takes

an integer argument to set capacity of the buffer.

• StringBuffer(String str): It creates a stringbuffer object

from the specified string.

• StringBuffer(charSequence []ch): It creates a stringbuffer

object from the charsequence array.

121

Difference between String and StringBuffer

String StringBuffer

String class is immutable. StringBuffer class is mutable.

String is slow and consumes more
memory when you concat too many
strings because every time it creates
new instance.

StringBuffer is fast and consumes less
memory when you cancat strings.

String class overrides the equals()
method of Object class. So you can
compare the contents of two strings by
equals() method.

StringBuffer class doesn't override the
equals() method of Object class.

122

Wrapper classes

• The wrapper class in Java provides the mechanism to convert

primitive into object and object into primitive.

• The automatic conversion of primitive into an object is known as

autoboxing and vice-versa unboxing.

• A Wrapper class is a class whose object wraps or contains a primitive

data types. When we create an object to a wrapper class, it contains a

field and in this field, we can store a primitive data types. In other

words, we can wrap a primitive value into a wrapper class object.

123

Need of Wrapper Classes
• They convert primitive data types into objects. Objects are needed if

we wish to modify the arguments passed into a method (because

primitive types are passed by value).

• The classes in java.util package handles only objects and hence

wrapper classes help in this case also.

• Data structures in the Collection framework, such

as ArrayList and Vector, store only objects (reference types) and not

primitive types.

• An object is needed to support synchronization in multithreading.

124

https://www.geeksforgeeks.org/arraylist-in-java/
https://www.geeksforgeeks.org/vector-vs-arraylist-java/

• Autoboxing: Automatic conversion of primitive types to

the object of their corresponding wrapper classes is known

as autoboxing. For example – conversion of int to Integer,

long to Long, double to Double etc.

• Eg:
import java.util.ArrayList;

class Autoboxing

{

public static void main(String[] args)

{

char ch = 'a';

Character a = ch;

ArrayList<Integer> arrayList = new ArrayList<Integer>();

arrayList.add(25);

System.out.println(arrayList.get(0));

}

}

125

• Unboxing: It is just the reverse process of autoboxing. Automatically

converting an object of a wrapper class to its corresponding primitive

type is known as unboxing. For example – conversion of Integer to int,

Long to long, Double to double etc.

• Eg :
import java.util.ArrayList;

class Unboxing

{

public static void main(String[] args)

{

Character ch = 'a';

char a = ch;

ArrayList<Integer> arrayList = new ArrayList<Integer>();

arrayList.add(24);

int num = arrayList.get(0);

System.out.println(num);

}

}

126

Primitive Data types and their Corresponding Wrapper class

127

